The role of lipid peroxidation and antioxidant therapies in the management of diabetes and hypertension

Authors

  • H. Kinjir Department of Haematology, BGS, Federal College of Veterinary and Medical laboratory Technology, Vom, Plateau state, Nigeria
  • Alhagie Drammeh Chemistry Unit, Division of Physical and Natural Sciences, School of Arts and Sciences, University of The Gambia, Gambia
  • Fatima B. Tanimu Department of Scientific and Industrial Research, National Research Institute for Chemical Technology, Zaria, Kaduna State, Nigeria
  • A. Lawal Department of Veterinary Medicine, Bayero University, Kano, Kaduna State, Nigeria
  • H. G. Anchau Department of Scientific and Industrial Research, National Research Institute for Chemical Technology, Zaria, Kaduna State, Nigeria
  • J. M. Yelwa Department of Scientific and Industrial Research, National Research Institute for Chemical Technology, Zaria, Kaduna State, Nigeria

Keywords:

Lipid profiles, Lipid peroxides, Antioxidant defense, Diabetes, Hypertension, Therapeutic interventions, Cardiovascular health

Abstract

Diabetes and hypertension are two of the most widespread global chronic diseases with high morbidity and mortality. Both of the diseases have a strong link with metabolic disorders and lipid metabolism dysregulation. In this review, we explore the intricate relationship between lipid profiles and lipid peroxides and antioxidant profiles in the etiology of diabetes and hypertension. Both of the diseases have elevated levels of low-density lipoprotein (LDL) cholesterol and decreased levels of high-density lipoprotein (HDL) cholesterol as a commonality in the causation of cardiovascular complications. In addition, oxidative stress in the form of excessive ROS production and subsequent lipid peroxidation hastens the disease process. Dysfunctional antioxidant defense systems in the body in the context of diabetes and hypertension further highlight the need for antioxidant therapies. Recent evidence suggests that lipid-modulating and antioxidant therapies targeting specific pathways may be the key to novel disease prevention and improved cardiovascular outcomes. This review integrates the importance of dissecting such intricate pathways towards the development of successful management and therapy paradigms in an attempt to improve patient outcome and reduce the health burden of such chronic diseases. In addition, we emphasize gaps in the literature and present directions for the exploration of personalized therapy interventions based on lipid and antioxidant imbalance.

References

American Diabetes Association. Standards of medical care in diabetes—2020 abridged for primary care providers. Clin Diabetes. 2020;38(1):10-38. Doi:10.2337/cd20-as01.

American Diabetes Association. Cardiovascular disease and risk management: Standards of medical care in diabetes—2022. Diabetes Care. 2022;45(Suppl 1):S144-S174. Doi:10.2337/dc22-S010.

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438. Doi:10.1155/2014/360438.

Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483-495. Doi:10.1016/j.cell.2005.02.001.

Bresciani G, Da Cruz IBM, González-Gallego J. The use of superoxide dismutase as a biomarker of oxidative stress in epidemiological studies. Curr Opin Clin Nutr Metab Care. 2015;18(5):409-414. doi:10.1097/MCO.0000000000000191.

Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14(5):575-585. Doi:10.1016/j.cmet.2011.07.015.

Brouwers FP, De Boer RA, Van der Harst P, Voors AA, Gansevoort RT, Bakker SJL, Hillege HL, van Gilst WH. Lipid profiles and their association with cardiovascular outcomes in a cohort of patients with hypertension. J Hypertens. 2020;38(4):768-776. doi:10.1097/HJH.0000000000002324.

Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol. 2004;24(5):816-823. Doi:10.1161/01.ATV.0000122852.22604.78.

Cefalu WT, Buse JB, Tuomilehto J, Del Prato S. Update to the position statement of the American Diabetes Association and the European Association for the Study of Diabetes: Management of hyperglycemia in type 2 diabetes, 2018. Diabetes Care. 2019;42(4):572-586. Doi:10.2337/dci19-0016.

Ference BA, Mahajan N, Lüscher TF, Nambi V. The role of lipids in the pathogenesis and treatment of atherosclerosis. J Am Coll Cardiol. 2020;75(9):1094-1103. Doi:10.1016/j.jacc.2019.12.064.

Goldberg IJ. Diabetic dyslipidemia: Causes and consequences. J Clin Endocrinol Metab. 2020;95(6):361-367. Doi:10.1210/jcem.95.6.361.

Gonzalez R, Rivera P. Lifestyle interventions in diabetes: The impact on oxidative stress and inflammation. Front Endocrinol (Lausanne). 2023;14(3):215-228. Doi:10.3389/fendo.2023.104917.

Guitard R, Crouzet J, Guesnet P. Antioxidant activity of polyphenols from purple sweet potato (Ipomoea batatas L.) in human intestinal Caco-2 cells. Food Funct. 2016;7(2):854-862. Doi:10.1039/C5FO01029A.

Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford: Oxford University Press, 2015.

Jiang Q, Li J, Chen X. Antioxidant therapy in cardiovascular diseases: Mechanisms, clinical studies, and future perspectives. Oxid Med Cell Longev. 2020;2020:8160171. Doi:10.1155/2020/8160171.

Kampoli AM, Tousoulis D, Stefanadis C, Antoniades C. Combination therapy targeting lipids and oxidative stress in cardiovascular diseases. J Am Coll Cardiol. 2020;75(9):1157-1168. Doi:10.1016/j.jacc.2019.12.076.

Khan N, Mukhtar H. Tea and health: Studies in humans. Curr Pharm Des. 2021;19(34):6141-6147. Doi:10.2174/1381612811319340005.

Khan MS, Memon MA, Kamran MA, Jabeen Z, Moinuddin AA, Jabeen S, et al. Effects of antioxidant supplementation on oxidative stress in patients with diabetes and hypertension: A randomized clinical trial. Oxid Med Cell Longev. 2021;2021:6638457. Doi:10.1155/2021/6638457.

Liu RH. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr. 2020;78(3):517S-520S. Doi:10.1093/ajcn/78.3.517S.

Liu Y, He X. Beetroot as a functional food: Antioxidant properties and health benefits. Food Sci Hum Wellness. 2024;13(1):55-67. Doi:10.1016/j.fshw.2024.02.005.

Liu Y, Zhang D, Wu Y, Zhou D. Antioxidant activity of anthocyanin extract from purple sweet potato and its effect on oxidative stress of human hepatocytes. Food Sci Hum Wellness. 2015;4(4):155-161. doi:10.1016/j.fshw.2015.10.001.

Liu X, Zhang D, Liu Y. Dietary antioxidants and the risk of type 2 diabetes: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020;60(21):3633-3646. doi:10.1080/10408398.2019.1709224.

Mailloux RJ. An update on mitochondrial reactive oxygen species production. Antioxidants. 2020;9(6):472. doi:10.3390/antiox9060472.

Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126-1167. doi:10.1089/ars.2012.5149.

Narayan MS, Dharmesh SM, Kumar V. Antioxidant and antibacterial activities of polyphenolic compounds from bitter gourd (Momordica charantia L.). J Agric Food Chem. 1999;47(12):5091-5095. doi:10.1021/jf990447p.

Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, et al. Hypertension. Nat Rev Dis Primers. 2020;6(1):1-23. Doi:10.1038/s41572-019-0145-8.

Pashkow FJ. Oxidative stress and inflammation in heart disease: Do antioxidants have a role in treatment and/or prevention? Int J Inflamm. 2011;2011:514623. doi:10.4061/2011/514623.

Simunkova M, Alwasel S, Alhazza I, Jomova K, Kollár V, Rusko M, et al. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol. 2019;93:1-40. doi:10.1007/s00204-019-02538-y.

Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-383. doi:10.1038/s41580-020-0230-3.

Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc Pharmacol. 2015;71:40-56. doi:10.1016/j.vph.2015.02.005.

Smith T, Patel R. Antioxidants in metabolic disorders: New perspectives for treatment. Front Pharmacol. 2024;15(1):311-327. doi:10.3389/fphar.2024.113297.

Steinberg D. Low-density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 2020;295(40):13440-13451. Doi:10.1074/jbc.REV120.012503.

Steinberg D, Witztum JL. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40(4):884-886. doi:10.1161/ATVBAHA.120.314004.

Sun J, Zhao H, Wang P. Hawthorn extract and its effects on cardiovascular health: A review of current findings. J Herb Med. 2024;18(2):123-136. doi:10.1016/j.herbmed.2024.01.012.

Sun Y, Lu Y, Saredy J, Wang X, Drummer C, Shao Y, et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020;37:101696. doi:10.1016/j.redox.2020.101696.

Tan BL, Norhaizan ME, Liew WPP, Sulaiman RH. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol. 2018;9:1162. doi:10.3389/fphar.2018.01162.

Toth PP, Ballantyne CM, Bittner VA. Management of hypertension in patients with hyperlipidemia. Hypertension. 2020;76(3):748-758. doi:10.1161/hypertensionaha.120.15420.

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2007;160(1):1-40. doi:10.1016/j.cbi.2005.12.009.

Wang Z, Hu D. Lipid metabolism and hypertensive vascular disease: A new frontier. J Hum Hypertens. 2020;34(7):487-496. doi:10.1038/s41371-020-0333-1.

Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13-e115. Doi:10.1161/HYP.0000000000000065.

Wettasinghe M, Bolling BW, Xiao H. Antioxidant activity of a black currant anthocyanin-rich extract. Food Chem. 2002;76(3):335-341. Doi:10.1016/S0308-8146(01)00275-7.

Wu G, Liang Z. Food therapy and medical diet therapy of traditional Chinese medicine. Clin Nutr Exp. 2018;18:1-5. Doi:10.1016/j.yclnex.2018.01.001.

Zappa M, Golino M, Verdecchia P, Angeli F. Genetics of hypertension: From monogenic analysis to GETomics. J Cardiovasc Dev Dis. 2024;11(5):154. doi:10.3390/jcdd11050154.

Zhang X, Li J, Chen X, Wang K, Wang Y. Lipid peroxides in the development and progression of atherosclerosis. Biochem Biophys Res Commun. 2021;534:276-280. doi:10.1016/j.bbrc.2020.10.119.

Zhang M, Liu D, Chen W. Role of superoxide dismutase in oxidative stress management: A new therapeutic approach. Pharmacol Ther. 2023;245(4):78-92. doi:10.1016/j.pharmthera.2023.104022.

Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling. Int J Mol Med. 2019;44(1):3-15. doi:10.3892/ijmm.2019.4188.

Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-950. doi:10.1152/physrev.00026.2013.

Downloads

Published

2025-01-07

How to Cite

Kinjir, H., Drammeh, A., Tanimu, F. B., Lawal, A., Anchau, H. G., & Yelwa, J. M. (2025). The role of lipid peroxidation and antioxidant therapies in the management of diabetes and hypertension. Innovative Research in Biotechnology, 4(1), 01–11. Retrieved from https://synstojournals.com/biotech/article/view/151

Issue

Section

Articles